Matrix Mittag-Leffler functions of fractional nabla calculus
نویسنده
چکیده مقاله:
In this article, we propose the definition of one parameter matrix Mittag-Leffler functions of fractional nabla calculus and present three different algorithms to construct them. Examples are provided to illustrate the applicability of suggested algorithms.
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملFractional Calculus of the Generalized Mittag-Leffler Type Function
We introduce and study a new function called R-function, which is an extension of the generalized Mittag-Leffler function. We derive the relations that exist between the R-function and Saigo fractional calculus operators. Some results derived by Samko et al. (1993), Kilbas (2005), Kilbas and Saigo (1995), and Sharma and Jain (2009) are special cases of the main results derived in this paper.
متن کاملFractional integral operators and the multiindex Mittag-Leffler functions
The aim of this paper is to study some properties of multiindex Mittag-Leffler type function E(1/ρj),(μj)(z) introduced by Kiryakova [V. Kiryakova, J. Comput. Appl. Math. 118 (2000), 241-259]. Here we establish certain theorems which provide the image of this function under the Saigo’s fractional integral operators. The results derived are of general character and give rise to a number of known...
متن کاملon certain fractional calculus operators involving generalized mittag-leffler function
the object of this paper is to establish certain generalized fractional integration and differentiation involving generalized mittag-leffler function defined by salim and faraj [25]. the considered generalized fractional calculus operators contain the appell's function $f_3$ [2, p.224] as kernel and are introduced by saigo and maeda [23]. the marichev-saigo-maeda fractional calculus operat...
متن کاملDiscrete Mittag-Leffler Functions in Linear Fractional Difference Equations
and Applied Analysis 3 and define recursively a∇−nf t ∫ t a a∇−n 1f τ ∇τ 2.4 for n 2, 3, . . .. Then we have the following. Proposition 2.1 Nabla Cauchy formula . Let n ∈ Z , a, b ∈ T and let f : T → R be ∇-integrable on a, b ∩ T. If t ∈ T, a ≤ t ≤ b, then a∇−nf t ∫ t a ̂ hn−1 ( t, ρ τ ) f τ ∇τ . 2.5 Proof. This assertion can be proved by induction. If n 1, then 2.5 obviously holds. Let n ≥ 2 an...
متن کاملNabla discrete fractional calculus and nabla inequalities
Here we define a Caputo like discrete nabla fractional difference and we produce discrete nabla fractional Taylor formulae for the first time. We estimate their remaiders. Then we derive related discrete nabla fractional Opial, Ostrowski, Poincaré and Sobolev type inequalities .
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 128- 140
تاریخ انتشار 2018-04-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023